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A B S T R A C T  

A new mapping algorithm for speech recognition relates the fea- 
tures of simultaneous recordings of clean and noisy speech. The 
model is a piecewise nonfinear transformation appfied to the noisy 
speech feature. The transformation is a set of multidimensional 
linear least-squares filters whose outputs are combined using a 
conditional Gaussian model. The algorithm was tested using SRI's 
DECIPHER TM speech recognition system [1-5]. Experimental 
results show how the mapping is used to reduce recognition errors 
when the training and testing acoustic environments do not match. 

1. I N T R O D U C T I O N  

In many practical situations an automatic speech recognizer has to 
operate in several different but well-defined acoustic environ- 
ments. For example, the same recognition task may be imple- 
mented using different microphones or transmission channels. In 
this situation it may not be practical to recollect a speech corpus to 
train the acoustic models of the recognizer. To alleviate this prob- 
lem, we propose an algorithm that maps speech features between 
two acoustic spaces. The models of the mapping algorithm are 
trained using a small database recorded simultaneously in both 
environments. 

In the case of steady-state additive homogenous noise, we can 

derive a MMSE estimate of the clean speech filterbank-log energy 
features using a model for how the features change in the presence 
of this noise [6-7]. In these algorithms, the estimated speech spec- 
trum is a function of the global spectral signal-to-noise ratio 
(SNR), the instantaneous spectral SNR, and the overall spectral 
shape of the speech signal. However, after studying simultaneous 
recordings made with two microphones, we befieve that the rela- 
tionship between the two simultaneous features is nonlinear. We 
therefore propose to use a piecewise-nonlinear model to relate the 
two feature spaces. 

1.1. Related Work on Feature Mapping 

Several algorithms in the literature have focused on experimen- 
tally training a mapping between the noisy features and the clean 
features [8-13]. The proposed algorithm differs from previous 
algorithms in several ways: 

• The MMSE estimate of the clean speech features in noise is 
trained experimentally rather than with a model as in [6, 7]. 

• Several frames are joined together similar to [13]. 

• The conditional PDF is based on a generic noisy feature not 
necessarily related to the feature that we are trying to esti- 
mate. For example, we could condition the estimate of the 
cepstral energy on the instantaneous spectral SNR vector. 

• Multidimensional least-squares filters are used for the map- 
ping transformation. This exploits the correlation of the fea- 
tures over time and among components of the spectral 
,features at the same time. 

• Linear transformations are combined together without hard 
decisions. 

• All delta parameters are computed after mapping the cep- 
strum and cepstral energy. 

• The mapping parameters are trained using stereo recordings 
with two different microphones. Once trained, the mapping 
parameters are fixed. 

• The algorithm can either map noisy speech features to clean 
features during training, or clean features to noisy features 
during recognition. 

1.2. Related W o r k  on Adapta t ion  

The algorithm used to map the incoming features into a more 
robust representation has some similarities to work on model 
adaptation. Some of the high-level differences between hidden 
Markov model (HMM) adaptation and the mapping algorithms 
proposed in this paper are: 

• The mapping algorithm works by primarily correcting shifts 
in the mean of the feature set that are correlated with 
observable information. Adapting HMM model parameters 
has certain degrees of freedom that the mapping algorithm 
does not have- for example the ability to change state vari- 
ances, and mixture weights. 

• Two HMM states that have identical probability distribu- 
tions and are not tied can have different distributions after 
adaptation. These distributions cannot be differentiated by 
mapping features. 

• The mapping algorithms described in this paper are able to 
incoiporate many pieces of information that have been tra- 
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difionaUy difficult to incorporate into HMM models and into 
adaptation algorithms. These include observations that span 
across several frames and the correlation of the state fea- 
tures with global characteristics of the speech waveform. 

These two techniques are not mutually exclusive and can be used 
together to achieve robust speech recognition performance. The 
boundary between these two techniques can be blurred when the 
mapping algorithm is dependent on the speech recognizer's 
hypothesis. 

2 .  T H E  P O F  A L G O R I T H M  

The mapping algorithm is based on a probabilistic piecewise-non- 
linear transformation of the acoustic space that we call Probabilis- 
tic Optimum Filtering (POF). Let us assume that the recognizer is 
trained with data recorded with a high-quality close-talking micro- 
phone (clean speech), and the test data is acquired in a different 
acoustic environment (noisy speech). Our goal is to estimate a 
clean feature vector ~ given its corresponding noisy feature 

n 

Yn where n is the frame index. (A list of symbols is shown in 
Table 1.) To estimate the clean vector we vector-quantize the clean 
feature space in I regions using the generalized Lloyd algorithm 
[14]. Each VQ region is assigned a multidimensional transversal 
filter (see Figure 1). The error between the clean vector and the 

I~,o l A~ 

x 
c n F 

e 

t r 

Figure 1: Multi-dimensional transversal filter for cluster i. 

estimated vectors produced by the i-th filter is given by 

e ni = Xn - Xni = Xn - ~ i  Yn (1) 

where e_: is the error associated with region i, W. is the filter 
coeffficidh~t matrix, and Yn is the tapped-delay lind of the noisy 
vectors. Expanding these matrices we get 

~ = [Ai,_p . . .A i , _ l  Ai, oAi ,  1 . . . A i ,  p b ~  (2) 

n - p  "'" Y n -  1 Yn Yn + 1 "'" Yn + p 

The conditional error in each region is defined as 

N - 1  - p  

E i =  E I[%i112p%'zn) (4) 
n = p  

where p(gilzn ) is the probability that the clean vector x i 
belongs to region gi given an arbitrary conditional noisy feature 

vector z n . Note that the conditioning noisy feature can be any 
acoustic vector generated from the noisy speech frame. For exam- 
ple, it may include an estimate of the SNR, energy, cepstral energy, 
eepstrum, and so forth. 

The conditional probability density function p(Znlg i) is modeled 

as a mixture of I Gaussian distributions. Each Gaussian distribu- 
tion models a VQ region. The parameters of the distributions 
(mean vectors and covariance matrices) are estimated using the 
corresponding z n vectors associated with that region. The poste- 

rior probabilities p(gilzn ) are computed using Bayes' theorem 

and the mixture weights P( gil are estimated using the relative 
number of training clean vectors that are assigned to a given VQ 

f 

region. 

Symbol ~ Dimension Description 
n 1 frame index 

i 1 

L 1 

M 1 

N 1 

I 1 

p 1 

e • L × I  
n !  

x L × I  
n 

i Lxl 
n 

Yn L x l  
z n M x  1 

ix i M x  I 
Z. M x M  

1 

W. (2p+l)L+l x L 
l 

Yn (2p+l)L+l x 1 
Aik L x L  
b i L x  1 
R. (2p+l)L+l x ~auto-correl~ 

l (2p+I)L+l I 
r; (2p+I)L+l x L  cross-correl 

region index 

feature vector size 

conditioning feature vector size 

number of training flames 

number of VQ regions 

maximum filter delay 

estimation error vector 

dean feature vector 

estimate of clean feature vector 

noisy feature vector 

conditioning noisy feature vector 

mean vector of gaussian i 
eovarianee matrix of gaussian i 
transversal filter coefficient matrix 

tap input vector 
multiplicative tap matrix 

additive tap matrix 

rrelation matrix 

~rrelation matrix 

Table 1: List of symbols 

To compute the optimum filters in the mean-squared error sense, 
we minimize the conditional error in each VQ region. The mini- 
mum mean-squared error vector is obtained by taking the gradient 
of E i defined in Eq. (4) with respect to the filter coefficient matrix 
and equating all the dements of the gradient matrix to zero. As a 
result, the optimum filter coefficient matrix has the form, 

W. = RSlr .  where 
l l l 

N - l - p  

Ri = E Yn~n p(gi Izn ) 
n = p  

(5) 

337 



is a probabilistic nonsingular auto-correlation matrix, and 

N - 1  - p  

r e=  E YnxnTp(g ilZ n) (6) 

n = p  

is a probabilistic cross-correlation matrix. 

The algorithm can be completely trained without supervision and 
requires no additional information other than the simultaneous 
waveforms. 

The run-time estimate of the clean feature vector can be computed 
by integrating the outputs of all the filters as follows: 

1 - 1  1 -1  

"~n= i=0E~iYnP(gilzn)={~0~iP(gilZn)}Yni= (7) 

3. EXPERIMENTS 

A series of experiments show how the mapping algorithm can be 
used in a continuous speech recognizer across acoustic environ- 
ments. In all of the experiments the recognizer models are trained 
with data recorded with high-quality microphones and digitally 
sampled at 16,000 Hz. The analysis frame rate is 100 Hz. 

The tables below show three types of performance indicators: 

• Relative distortion measure. For a given component of a 
feature vector we define the relative distortion between the 
clean and noisy data as follows: 

lEE<z-y)2] 
d = var (x) 

Word recognition error. 

(8) 

Error ratio. The error ratio is given by E n / E  c where 

E is the word recognition error for the test-noisy/train- n 
clean condition, and E c is the word recognition error of 

the test-clean/train-clean condition. 

3.1. Single Microphone 

To test the POF algorithm on a single target acoustic environment 
we used the DARPA Wall Street Journal database [15] on SRI's 
DECIPHER TM phonetically tied-mixture speech recognition sys- 
tem [2]. The signal processing consisted of a filterbank-based 
front end that generated six feature streams: cepstrum (cl-c12), 
cepstral energy (cO), and their first- and second-order derivatives. 
Cepstral-mean normalization [16] was used to equalize the chan- 
nel. We used simultaneous recordings of high-quality speech 
(Sennheiser 414 head-mounted microphone with a noise-cancel- 
ing element) along with speech recorded by a standard speaker 
phone (AT&T 720) and transmitted over local telephone lines. We 
will refer to this stereo data as clean and noisy speech, respec- 
tively. The models of the recognizer were trained using 42 male 
WSJ0 training talkers (3500 sentences) recorded with a Sen- 

nheiser microphone. The models of the mapping algorithm were 
trained using 240 development training sentences recorded by 
three speakers. The test set consisted of 100 sentences (not 
included in the training set) recorded by the same three speakers. 

In this experiment we mapped two of the six features: the cep- 
strum (cl-c12) and the cepstral energy (cO) separately. The deriva- 
tives were computed from the mapped vectors of the cepstral 
features. For the conditioning feature we used a 13-dimensional 
cepstral vector (c0-c12) modeled with 512 Gaussians with diago- 
nal ¢ovariance matrices. The results are shown in Table 2. 

Average Recognition 
Filter Coefficients Distortion Error (%) Error Ratio 

No mapping 

Ai.o=I, bi 

Ai.o, bi 

Ai_ 1 .... A i .  1 , b i 

Ai _ 2 .... Ai,. 2 , bi 

Ai,.3 .... Ai,.3 , bi 

Ai _4 .... Ai . 4 , bi 

0.72 

0.62 

0.57 

0.51 

0.50 

0.49 

0.49 

27.6 

18.1 

17.0 

17.3 

16.4 

15.9 

16.1 

2.46 

1.62 

1.52 

1.54 

1A6 

1.42 

1.44 

Table 2: Performance of the POF algorithm for different num- 
ber of filter coefficients. The number of Oaussian distributions is 
512 per feature and the conditioning feature is a 13-dimensional 
cepstral vector. 

The baseline experiment produced a word error rate of 27.6% on 
the noisy test set, that is, 2.46 times the error obtained when using 
the clean data channel. A 34% improvement in recognition perfor- 
mance was obtained when using only the additive filter coefficient 
b i. (Recognition error goes down to 18.1%.) The best result 
(15.9% recognition error) was obtained for the condition p=3, in 
which six neighboring noisy frames are being used to estimate the 
feature vector for the current frame. The correlation between the 
average relative distortion between the six clean and noisy features 
and the recognition error is 0.9. 

3.2. ATIS Simultaneous Corpus 

To test the performance of the POF algorithm on multiple micro- 
phones we used SRI's stereo-ATIS database. (See [1] for details.) 
A corpus of both training and testing speech was collected using 
simultaneous recordings made from subjects wearing a Sennheiser 
HMD 414 microphone and holding a telephone handset. The 
speech from the telephone handset was transmitted over local tele- 
phone lines during data collection. Ten different telephone hand- 
sets were used. Ten male speakers were designated as training 
speakers, and three male speakers were designated as the test set. 
The training set consisted of 3,000 simultaneous recordings of 
Sennheiser microphone and telephone speech. The test set con- 
sisted of 400 simultaneous recordings of Sennheiser and telephone 
speech. The results obtained with this pilot corpus are shown in 
Table 3. 
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Acoustic Model Training Test Set Word Error (%) 

Training Front-End 
Sennheiser Telephone 

Data Bandwidth 

Sennheiser Wide 7.8 19.4 

Sennheiser Telephone 9.0 9.7 
I 

Telephone Telephone 10.0 10.3 

Table 3: Effect of different training and front-end bandwidth on 
test set performance. Results are word error rate on the 400 Sen- 
tence simultaneous test set. 

We can see from Table 3 that there is a 15.4% decrease in perfor- 
mance when using a telephone front end (7.8% increases to 9.0% 
word error) and testing on Sennheiser data. This is due to the loss 
of information in reducing the bandwidth from 100-6400 Hz to 
300-3300 Hz. However, when we are using a telephone front end, 
there is only a 7.8% increase in word error when testing on tele- 
phone speech compared to testing on Sennheiser speech (9.7% 
versus 9.0%). This is a very surprising result, and we had expected 
a much bigger performance difference when Sennheiser models 
are tested on telephone speech acoustics. 

3.3. Multiple Microphones: Single or Multiple Mapping 

The POF mapping algorithm can be used in a number of ways 
when the microphone is unknown. Some of these variations are 
shown in Table 4. 

Word 
Experiment Error 

Single Mapping Combining All 10 Telephones 9.4 
in Training Data 

Train 10 Mappings, One for Each Telephone; 9.2 
Run 10 Recognizers in Parallel, each using Dif- 
ferent Mapping; Select Recognizer with Highest 

Probability 

Top1 9.3 Train 10 Mappings, One for Each 
Telephone; Run 10 Mappings in 
Parallel and Average Features of 

Best N Feature-Streams that Have 
Highest Likelihood 

Train 15 Mappings for WSJ Cor- 
pus; Run 15 Mappings in Parallel 
and Average Features of Best N 
Feature-Streams that Have the 

Highest Likelihood 

Top2 9.2 

Top3 8.9 

8.7 Top4 

9.8 

Top4 

Top1 

Top2 9.6 

Top3 10.3 

10.7 

Table 4: Performance on the multiple-telephone handset test set 
when mapping algorithm is used in different ways. 

The differences between the experimental conditions are small, 
but the trends are different and depend on the mapping and the 
corpus. These differences depend on the similarities of the differ- 
ent microphones that are used in training conditions, and the rela- 
tionship between the training and the testing conditions. 

When the microphones are all similar (10 telephone mappings), 
then averaging the features of each mapping helps improve perfor- 
mance. When the microphones are very different (e.g., those in the 
WSJ corpus), averaging the features of each mapping has a mini- 
mum when averaging two best (likelihood) feature streams. 

3.4. Multiple Microphones: Conditioning Feature 

The next experiment varied the conditioning feature. The condi- 
tioning feature is the feature vector used to divide the space into 
different acoustic regions. In each region of the acoustic space a 
different linear transformation is trained. 

The mapping approach was fixed: we used a single POF mapping 
for multiple telephone handsets. For this experiment we mapped 
the eepstrum vector (cl-c12) and the eepstral energy (cO). The 
maximum delay of the filters was kept fixed atp=2, and the num- 
ber of Gaussians was 512. The experimental variable was the fea- 
ture the estimates were conditioned on. We tried the following 
conditioning features: 

• Cepstrum. Same conditioning feature used in the single 
microphone experiment (c0-c12). 

• Spectral SNR. This is an estimate of the instantaneous sig- 
nal-to-noise ratio computed on the log-ffilterbank energy 
domain. The vector size is 25. 

Cepstral SNR. This feature is generated by applying the 
discrete cosine transform (DCT) to the spectral SNR. The 
transformation reduces the dimensionality of the vector from 
25 to 12 elements. 

The results are shown in Table 5. The baseline result is a 19.4% 
word error rate. This result is achieved when the same wide-band 
front end is used for training the models with clean data and for 
recognition using telephone data. When a telephone front end [1] 
is used for training and testing, the error decreases to 9.7%. The 
disadvantage of using this approach is that the acoustic models of 
the recognizer have to be reestimated. However, the POF-based 
front end operates on the clean models and results in better perfor- 
mance. The eepstral SNR produces the best result (8.7%). With 
this conditioning feature we combine the effects of noise and spec- 
tral shape in a compact representation. 

Word 
Experiment Error (%) Error Ratio 

Wide-band front-end 

Telephone-bandwidth front-end 

Mapping with cepstrum 

Mapping with spectral SNR 

Mapping with cepstral SNR 

19.4 

9.7 

9.4 

8.9 

8.7 

2.49 

1.24 

1.20 

1.14 

1.11 

Table 5: Performance for the multiple-telephone handset test 
set when varying the conditioning feature. 
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4. W S J  E X P E R I M E N T A L  R E S U L T S  

Another series of experiments was performed on the WSJ Speech 
Corpus [15]. We evaluated our system on the 5000-word-recogni- 
tion closed-vocabulary speaker-independent speech-recognition 
tasks: Spoke $5 Unknown Microphone, Spoke $6: Known Micro- 
phone, and Spoke $7 Noisy Environment. 

The version of the DECIPHER speaker-independent continuous 
speech :recognition system used for these experiments is based on 
a progressive-search strategy [3] and continuous-density, genonic 
HMMs [2]. Gender-dependent models are used in all passes. Gen- 
der selection uses the models with the higher recognition likeli- 
hood. 

The acoustic models used by the HMM system were trained with 
37,000 sentences of Sennheiser data from 280 speakers, a set offi- 
cially designated as the WSJ0+WSJ1 many-speaker baseline 
training. A 5,000 closed-vocabulary back-off trigram language 
model provided by M.I.T. Lincoln Laboratory for the WSJ task 
was used. Gender-dependent HMM acoustic models were used. 

The front-end processing extracts one long spectral vector consist- 
ing of the following six feature components: cepstrum, energy, 
and their first and second order derivatives. The dimensionality of 
this feature is 39 (13 * 3) for the wide-bandwidth spectral analysis 
and 27 (9 * 3) for the telephone-bandwidth spectral analysis. The 
cepstral features are computed from an FFI" filterbank, and subse- 
quent cepstral-mean normalization on a sentence-by-sentence 
basis is performed. 

Before using wide-bandwidth context-dependent genonie HMMs, 
a robust estimate of the Sennheiser cepstral parameters is com- 
puted using POE The robust front-end analysis is designed for an 
unknown microphone condition. The POF mapping algorithm 
estimates are conditioned on the noisy cepstral observations. Sep- 
arate mappings are trained for each of the 14 microphones in the 
baseline WSJ0+WS/1 si_tr_s stereo training, and one mapping for 
the overall ease of single nontelephone mapping. When the default 
no-transformation zero-mean eepstra are included, this makes a 
total of 15 estimated feature streams. These feature streams are 
computed on each test waveform, and the two feature streams with 
the highest likelihoods (using a simplified HMM for scoring the 
features) are averaged together (Top2). In all cases the first and 
second delta parameters are computed on these estimated cepstral 
values. 

Front-End Word 
Bandwidth Signal Processing Test Set Error (%) 

Wide Standard Sennheiser 5.8 

Telephone Standard Sennheiser 9.6 

Telephone Standard Telephone 10.9 

Wide Robust POF15 Telephone 11.9 
Cepstral Mapping 

Table 6: Performance on the Aug 1993 WSJ Spoke $6 develop- 
ment test set for simultaneous Sennheiser/telephone recordings 

The results in Table 6 show that most of the loss in performance 
between recognizing on high-quality Sennheiser recordings and 
on local telephone speech is due to the loss of information outside 

the telephone bandwidth. There is an increase in the word-error 
rate of 66% when testing on Sennheiser recordings with a wide- 
bandwidth analysis (5.8%) compared to testing with a telephone- 
bandwidth analysis (9.6%). 

The loss in performance when switching from Sennheiser record- 
ings to telephone recordings is small in comparison to the loss of 
information due to bandwidth restrictions. There is a 14% increase 
in the word error rate when testing on the Sennheiser recordings 
(9.6%) compared to testing on the AT&T telephone recordings 
(10.9%). 

4.1. Official Spoke Results: Unknown Microphone 

The results in Table 7 show the speech recognition performance 
when the secondary microphone condition is unknown. In these 
experiments, the robust signal processing front end decreased the 
word error rate from 17.2 to 13.1%. 

Experiment 

Word Error 

Sennheiser 
Secondary 

Microphone 

Compensation Disabled 6.6 17.2 

Compensation Enabled i 6.6 13.1 

Table 7: Word error rate with and without compensation on both 
Sennheiser and secondary microphone data 

4.2. Official Spoke Results: Known Microphone 

The results in Table 8 show no significant difference in speech rec- 
ognition performance between those obtained with an Audio- 
Teehnica microphone and those obtained with the Sennheiser 
microphone. The robust front-end signal processing has demon- 
strated for the first time that one can achieve the same performance 
with a stand-mounted microphone as with a high-quality close- 
talking microphone, all when trained on a high-quality speech cor- 
pus. 

Experiment 

Word Error 

Sennheiser 
Secondary 

Microphone 

Audio-Technica Recordings 5.9 6.4 

Telephone Handset Recordings 7.2 19.1 

Table 8: Word Error for both Sermheiser and Secondary Micro- 
phone with Robust Signal Processing Front End 

4.3. Official Spoke Results: Noisy Environment 

The results in Table 9 show the performance when the recordings 
are made in a noisy environment. The first noisy environment was 
a computer room (average background noise level of 58 to 59 
dBA), and the second noisy environment was a laboratory with 
mail sorting equipment (average noise level varied from 62 to 68 
dBA). The error rates are significantly higher for the Audio-Tech- 
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nica microphone than for the Sennheiser microphone in the noisier 
environment. In the computer room environment, the performance 
with the Audio-Technica microphone is almost indistinguishable 
from that of the Sennheiser recording. 

Experiment 

Audio-Techniea Env 1 
Recordings 

Env 2 

Telephone Handset Env 1 
Recordings 

Env 2 

Word Error 

Sennheiser 
Secondary 

Microphone 

6.3 8.5 

9.1 17.4 

8.4 29.1 

8.3 28.8 

Table 9: Word Error for both Sennheiser and Secondary Micro- 
phone with Robust Signal Processing Front End when Recorded 
in Two Noisy Environments 

5, C O N C L U S I O N S  

We have presented a feature-mapping algorithm capable of 
exploiting nonlinear relations between two acoustic spaces. We 
have shown how to improve the performance of the recognizer in 
the presence of a noisy signal by using a small database with 
simultaneous recordings in the clean and noisy acoustic environ- 
ments. 

We have shown that 

• There is no significant difference in speech recognition per- 
formance between those obtained with an Audio-Teehniea 
microphone and those obtained with a Sennheiser micro- 
phone. There is no significant performance degradation in a 
quiet environment and only a slight degradation in low- 
noise environments (~59 dBA). 

• Multidimensional least-squares filters can be successfully 
used to exploit the correlation of the features over time and 
among components of the spectral features at the same time. 
These filters can be conditioned on both local and global 
spectral information to improve robust recognition perfor- 
malice. 

• Most of the performance loss in converting wide-bandwidth 
models to telephone speech models is due to the loss of 
information associated with the telephone bandwidth. 

• It is possible to construct acoustic models for telephone 
speech using a high-quality speech corpus with only a minor 
increase in recognition word error rate. 

• A telephone-bandwidth system trained with high-quality 
speech can outperform a system that is trained on telephone 
speech even when tested on telephone speech. 

• The variability introduced by the telephone handset does not 
degrade speech recognition performance. 

• Robust signal processing can be designed to maintain speech 
recognition performance using wide-bandwidth HMM mod- 
els with a telephone-bandwidth test set. 
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